On linear patterns and drifting problems

Exactly where [a lesson] moves depends on such complex factors as the structures of those present, the context, and what has been anticipated. It may move toward more formulated understandings, if such formulation is relevant to the play space or if it becomes part of a further exploration. It may simply move to other sorts of activities. This, of course, is not to say that we should just allow whatever might happen to happen, thus abandoning our responsibilities as teachers. Rather, it is to say that we cannot make others think the way we think or know what we know, but we can create those openings where we can interactively and jointly move toward deeper understandings of a shared situation.

(Davis, 1996, p. 238-39)

My Grade 9 students are currently working on recognizing, analyzing, graphing, and solving problems involving linear relations. Linear relations lend themselves so naturally to describing patterns à la www.visualpatterns.org, and this is precisely how we got our toes wet in the topic: For several days, my students had been analyzing, extending, and (productively) arguing about a variety of linear and non-linear patterns. The intention of these first few lessons was to have students develop (or, in some cases, refine) an understanding of constant and non-constant change and to connect patterns in pictures to patterns in tables of values.

As the students began to connect ideas, I looked to develop an activity that gave students an opportunity to apply the generalizations emerging from the phenomena that we were playing with. Continue reading “On linear patterns and drifting problems”

Pi Club: Round 2

First things first, Pi Club has a new member – and SHE is a wonderful addition to the group! WOOP WOOP, girl power!

Today, we worked on two problems. First, the lightbulb problem (found here):

There are 100 light bulbs lined up in a row in a long room. Each bulb has its own switch and is currently switched off. The room has an entry door and an exit door. There are 100 people lined up outside the entry door. Each bulb is numbered consecutively from 1 to 100. So is each person.

Person No. 1 enters the room, switches on every bulb, and exits. Person No. 2 enters and flips the switch on every second bulb (turning off bulbs 2, 4, 6…). Person No. 3 enters and flips the switch on every third bulb (changing the state on bulbs 3, 6, 9…). This continues until all 100 people have passed through the room.

What is the final state of bulb No. 64? And how many of the light bulbs are illuminated after the 100th person has passed through the room?

They didn’t take too long to work this one out. Great conversations were had.

Continue reading “Pi Club: Round 2”

I think I started a math club

It began with one student. I noticed pretty early in the semester that grade 9 math was old hat for him and that he needed a challenge, so we started to meet once a week or so to talk math and work on some interesting problems. (During our first meeting, we proved that the square root of 2 is irrational.)

Then, he brought a friend. Who eventually brought two more friends. (If you’ve been doing the math, you might expect 8 students at our next meeting; alas, there were only 5. But wait, that’s five students who want to do math outside of math class!) We did a few problems, but mostly spent time discussing the idea of doing independent projects that the students would present to the class on the last day before Christmas break.

Today was the first session that really felt math club-y: I ordered some pizza, gave the students the Crossing the Bridge problem (thanks, Sadie!) and some white boards, then set them loose.

Continue reading “I think I started a math club”